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Abstract:	
 
New languages emerge through interactions among people, yet the role of social network 
structure in language emergence is not clear, despite research from experimental semiotics, 
observational fieldwork, and computational modeling. To better understand the effects of social 
network structure on the formation of conventional referring expressions, we use a silent gesture 
paradigm that combines the methodological control of experimental semiotics and computational 
simulations with the naturalistic affordances of the human body, physical environment, and 
interpersonal communication. We elicited gestural referring expressions from hearing 
participants randomly assigned to either a richly- or sparsely-connected communicative network. 
Results demonstrated greater conventionalization among participants in the richly-connected 
condition, although this effect reverses after accounting for between-condition differences in 
overall number of communicative interactions. These results provide the first experimental 
demonstration that communicative network structure causally impacts the conventionalization of 
referring expressions in human participants, using a communicative modality in which human 
language naturally arises.	
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1 Introduction	
 
 How do people agree on what to call things? The emergence of conventionalized 
referring expressions1 is a fundamental step in the development of any semiotic system- 
including human language, which is our focus here. As far back as Saussure (1916/1983), or 
even Plato’s Cratylus, scholars have theorized about the impact of social interaction over time in 
shaping the conventionalization of referring expressions. However, this work was largely 
speculative; only recently have more empirically-grounded methods arisen for studying the 
impact of social-communicative structure on emergent linguistic structure. At least three general 
methods are currently prevalent in the literature: experimental semiotics, observational fieldwork 
on emerging languages, and computational simulation. Studies using these different methods 
have not always agreed, as described below, nor are they necessarily informative about the 
processes by which conventions emerge in human language. The present manuscript yields new 
evidence from a silent gesture task that combines that experimental control of traditional studies 
in experimental semiotics and computational simulations with the naturalistic affordances of 
having real human beings with real human bodies in real interaction, communicating in a 
modality in which human language naturally arises (i.e. visual-gestural communication). We 
argue that this type of evidence is more informative about the actual processes of linguistic 
conventionalization compared to approaches that abstract farther away from actual embodied 
communication.	
 The central question of the present study is whether the conventionalization of 
referring expressions will be greater in networks where all members of a population interact with 
one another, or in networks where all communication involves a central “hub”, as illustrated 
schematically in Figure 1. Before describing the design of the present study, we first review the 
available evidence about the impact of communicative network structure on the 
conventionalization of referring expressions, and the naturally emerging systems that motivate 
the inclusion of these two network structures.	
1.1 Evidence From Experimental Semiotics.	
 Experimental semiotics is an emerging field of research in which human 
participants are asked to solve some sort of challenge that requires them to communicate with 
each other, but in which already-conventionalized ways of communication (e.g. speaking, 
signing, writing) are withheld. Instead, participants must make use of whatever options are 
available to them to accomplish the task at hand; the object of study is typically the process by 
which participants arrive at a conventionalized system, and/or the nature of system itself. (For 
useful overviews of experimental semiotics, see Galantucci, Garrod, & Roberts, 2012; Tamariz, 
2017). In these studies, artificial constraints are intentionally imposed on participants to prevent 
them from defaulting to easier solutions, such as using their native language, because use of an 
already-conventionalized system would not reveal anything about the process of 
conventionalization.	

																																																								
1 We use the term referring expression rather than word in order to reserve the notion of word for 
referring expressions that have also accrued additional syntactic and phonological features such 
as grammatical category, syllabic structure, etc. We make no attempt to argue that the referring 
expressions elicited in our experiment have such features.  	
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 The features that are observed in the systems created under such conditions are 
often described in abstract terms: arbitrariness, iconicity, combinatoriality, compositionality, 
duality of patterning, etc. Results of this nature are valuable, but they are only one piece of the 
puzzle. For example, experiments in which participants must signal their intentions by moving a 
mouse on a computer screen may yield systems that exhibit combinatoriality; however, the fact 
remains that no human language has evolved in a computer-mouse modality. Conversely, 
systems like drawing, music, and computer code have many of these features and yet never 
develop other key aspects of linguistic structure despite long histories of interaction and 
transmission by humans. Consequently, there is still a need to connect the dots between the 
availability of these abstract concepts and their actual instantiation in communicative modalities 
in which natural languages arise (i.e. sign and speech).	
 Three previous studies in experimental semiotics have reported that communicative 
network structure impacts the conventionalization of referring expressions. Fay et al. (2008) 
asked participants to create drawings to represent various concepts (e.g. microwave, Brad Pitt). 
Participants were either embedded in a communicative network with seven other people (who all 
eventually interacted with one another), or in a dyad where neither member interacted with any 
other. They report, but do not quantify, that for any given item (e.g. Brad Pitt), the drawings 
produced by the members of the interacting network were more conventionalized than those 
created by the isolated dyads. A subsequent study by the same group (Fay et al., 2010) quantified 
conventionalization across the different network conditions by asking naïve participants to rate 
the similarity between various pairs of drawings. After interaction had had time to exert its 
maximal effect (i.e. the end of the experiment), drawings made by members of the interacting 
community were rated as more similar to each other (i.e. more conventionalized) than drawings 
produced by either isolated pairs or by members of non-interacting communities.	
 These results are consistent with the hypothesis that conventionalization of 
referring expressions will be greater in networks where all members of a population interact with 
one another, relative to networks in which all communication involves a central “hub”. However, 
the networks in these two studies did not technically differ in their communicative structure: all 
participants in both networks interacted with all other members. Instead, the conditions in the 
Fay et al. studies differed mainly in the number of members of each network (8 in interacting 
communities vs. 2 in isolated dyads). In addition, we cannot assume that findings from pictorial 
communication will necessarily translate to other modes of communication; indeed, Fay et al. 
(2008) explicitly state that their study is about the emergence of pictorial communication, which 
has different properties than language (Fay et al., 2008, p. 3554).	
 The third study to have measured the impact of communicative network structure 
on the emergence of referring expressions (Centola and Baronchelli, 2015) is also useful for 
illustrating why studying naturalistic human interactions is important. Centola and Baronchelli 
wanted to understand how various types of network structures impacted the emergence of social 
conventions in general, of which linguistic behavior is one example. The design of their study 
involved 510 participants, each of whom was randomly assigned to one of three network 
structures (spatially-embedded, random, or homogenously-mixed). Participants took part over 
the internet, and interacted in dyads. The task was to generate a proper name in response to a 
picture of a human face. After making a guess, participants could see what their partner had 
guessed, but no further interaction between the partners occurred. Instead, each were assigned a 
different partner for each subsequent round, with an average of 30 rounds per network. The face 
in the stimulus picture never changed. Results demonstrated that participants assigned to the 
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homogeneously-mixed network were the only ones to reliably achieve network-wide 
convergence on a name for the face in the stimulus picture, even after 30 rounds. 

These results succeed in demonstrating the relative advantage of the homogeneously-
mixed network structure over the spatially-embedded and random networks; however, they do 
not succeed in demonstrating that the emergence of linguistic referring expressions follows any 
such process. For example, consider what would probably happen if you and a stranger wanted 
to refer to a particular person, but neither of you knew that person by name. It is highly unlikely 
that you would each simultaneously suggest a proper name at random, and then repeat the 
process with a different stranger if this initial attempt is unsuccessful. Instead, a number of other 
possibilities would be far more likely: you might overtly suggest a label, and your interlocutor 
could either accept it, modify it, or suggest another expression instead. Although your initial 
suggestion might be a proper name if the referent is a person (e.g. “Let’s call him Bill”), this 
strategy is likely to fail if you wanted to refer to anything else (e.g. a novel machine that you 
might observe when touring a factory, or an abstract sculpture). For nonhuman referents (and 
potentially also for human referents), you might refer to physical appearance, presumed function, 
or resemblance to other elements that you believe to be in common ground with your 
interlocutor. You might also produce deictic or iconic gestures to supplement the information in 
your speech. These same strategies may also be used to refer to something that’s not physically 
present. This is in fact how humans behave when they share a language with their interlocutor 
but lack a referring expression for a particular item (Clark & Wilkes-Gibbs, 1986). Of course, the 
critical question is how humans would behave if they did not have recourse to a shared linguistic 
system, but were in the process of co-creating one. Existing studies in experimental semiotics 
leave this question unanswered. More promising answers come from observational fieldwork on 
emerging sign languages, to which we turn next.	
1.2 Evidence from observational fieldwork on emerging languages.	
 The de novo emergence of new sign languages affords unprecedented opportunities 
to observe the actual processes of emergence and conventionalization of referring expressions. 
The circumstances in Nicaragua are particularly valuable for investigating possible impacts of 
communicative network structure on the conventionalization of referring expressions.	
 Two types of young semiotic systems are attested in Nicaragua, each created over 
comparable periods of time, but arising in social/interactional networks with radically different 
communicative structure.  Some deaf individuals in Nicaragua have acquired Nicaraguan Sign 
Language (NSL), which is used by ~1,500 people as their primary language. The communicative 
networks of NSL signers are therefore richly-connected, as schematically illustrated in Figure 1. 
Meanwhile, other deaf individuals have grown up as “homesigners”: lacking access to NSL or 
any other language, signed or spoken, these individuals have created semiotic systems 
(homesign) that they use with their immediate interlocutors (friends, family). The communicative 
network of a homesign system approximates the sparsely-connected network illustrated in Figure 
1, where the central node (“A”) represents the homesigner, who is connected to each other 
member of the network but where nodes B, C, and D (e.g. mother, father, sibling, friend) are not 
connected to each other. This represents the fact that in natural interactions, these people do not 
use the homesign with each other; they use Spanish instead.	
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Figure 1	
 

Recently, Richie, Yang, and Coppola (2014) studied the conventionalization of referring 
expressions among deaf homesigners in Nicaragua and their family/friends, and among NSL 
signers. They asked each homesigner to produce their referring expression for common items 
(e.g. cow, rain, sun, egg, etc.), and then did the same with each homesigner’s most frequent 
interlocutors (e.g. parents, siblings, friends). These referring expressions were typically 
composed of several conceptual components: for example, one person’s response to the item 
‘cow’ might be HORNS-MILKING, whereas another’s might be MILKING-DRINK. For each 
item, they then quantified conventionalization by calculating a formal measure of (dis)similarity 
among the referring expressions produced by members of each homesign family. Critically, 
conventionalization was weaker among people in homesign networks than among members of 
the first cohort of Nicaraguan Sign Language users, despite the fact that both homesigners and 
NSL signers had been using their respective systems for roughly the same amount of time. This 
is consistent with the hypothesis that richly-connected networks will show greater 
conventionalization than sparsely-connected networks.	

 Of course, as with most studies based on naturalistic observation, these findings do 
not demonstrate a causal impact of communicative network structure on lexical 
conventionalization. For one thing, even if the difference between homesign and NSL network 
structures has an impact on conventionalization, the mechanism(s) by which it does so is unclear. 
For example, in the NSL community, multiple, simultaneous interactions can occur among 
multiple pairs or groups of interlocutors. In homesign communities, however, only one 
conversation – with the homesigner involved – can happen at once, because if other members of 
the homesign community wish to interact they simply speak Spanish. Thus, per unit time, the 
NSL network provides more opportunities for interaction. It may be this, rather than an 
advantage in conventionalization per interaction, that accounts for the greater 
conventionalization of NSL compared to homesign. Thus, to provide a more rigorous 
investigation of the causal role of network structure on language emergence, Richie et al. (2014) 
and others have used computational simulations.	
1.3 Evidence from computational simulations.	
 Because naturally-occurring cases of language emergence are rare and impossible 
to control, and because of the logistical complexity of conducting experiments with large groups 
of people interacting over time, computational modeling has emerged as a key tool in studying 
language emergence generally (e.g., de Boer, 2000; Kirby, Dowman, and Griffiths, 2007) and 
conventionalization specifically (e.g., Barr, 2004; Puglisi, Baronchelli, & Loreto, 2008). Many of 
these models have been so-called agent-based models (ABMs), as they model how local 
interaction among multiple agents gives rise to global coordination or structure. Further, agents 
in ABM’s can be situated in arbitrarily complex social networks, making ABM’s a powerful tool 
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for understanding the effects of social network structure on the emergence of large-scale 
structure. Indeed, several studies have used ABM’s to understand how social network structure 
impacts conventionalization of referring expressions (for brief review, see, e.g., the section on 
‘Simple dynamics on networks’ in Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & 
Christiansen, 2013). As mentioned above, Richie et al (2014) supplemented their studies of 
Nicaraguan Sign Language and homesign with an agent-based model of gesture2 production, 
comprehension, and learning. In their model, agents associated gestures (e.g., MILKING, 
DRINK) to objects (‘cow’) with certain probability, and sampled those probabilities when 
attempting to communicate about an object. Listeners likewise attempted to comprehend 
utterances by producing a string of gestures for the object under discussion (under the 
assumption that the object could already be disambiguated for both interlocutors by points and 
other deictics), and comparing their string to the speaker’s. Communication succeeded 
probabilistically as a function of similarity of the speaker’s and listener’s strings, and, if 
communication succeeded, the listener rewarded and punished their internal probabilities based 
on the gestures present or absent in the speaker’s utterance. Groups of agents communicating in 
this fashion eventually conventionalized gestures for particular objects. Critically, however, 
richly-connected networks of agents conventionalized faster, i.e. with fewer interactions, than did 
sparsely-connected networks, mirroring the differences between homesign and NSL networks in 
the observational data, and providing a possible mechanistic basis for the network effect.	

That result, however, contrasts with that of Gong, Baronchelli, Puglisi, and Loreto 
(2012). In their model, called the Naming Game, agents carved a perceptual continuum (color) 
into categories, and then agreed upon labels that refer to one or more categories. In contrast to 
Richie et al. (2014), where the agents both know the intended referent (e.g., ‘cow’) but adjust the 
probabilities of producing corresponding gestures, Gong et al.'s agents must guess the intended 
referent through their word-referent mappings. Whereas Richie et al. found that rich networks 
converged much faster than sparse networks, Gong et al. (2012) found that sparse networks 
offered mostly superior convergence properties compared to rich networks.	

Are the Richie et al. (2014) and Gong et al. (2012) results contradictory and in need of 
resolution? One possibility is that they are simply modeling two different kinds of naturally-
occurring conventionalization: one involving multi-morphemic expressions for (again, possibly) 
pre-existing categories (as in homesign and NSL), and the other involving mono-morphemic 
expressions developed for co-evolving categories (as in Gong et al., 2012). Another possibility, 
though, is that one or both models rely on unrealistic assumptions. After all, models can only 
show what follows from their assumptions, and if the assumptions are wrong, then the model 
predictions may not be accurate. For example, the agents in Richie et al. (2014) updated their 
lexicons via reinforcement learning; this is a mode of learning that has wide support in various 
domains (Niv, 2009), but there is no particular empirical evidence that humans use it for lexical 
conventionalization. Both possibilities point to the need for experiments that test the effects of 
social network structure on conventionalization with real people, in contexts that are more 
ecologically valid, while still being amenable to empirical control.	
1.4 The present study.	

The present study is thus motivated by the fact that despite much previous research, no 
studies have experimentally tested whether communicative network structure impacts the 
																																																								
2	  The model is about gesture production, comprehension, and learning, but gestures are 
represented by numbers in the model. We make this footnote simply to avoid ‘mistaking the map for the 
territory’.    	
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conventionalization of referring expressions when real humans with real bodies communicate 
about real things in the real world. We address this gap by randomly assigning naïve human 
participants to richly- or sparsely-connected networks (approximating NSL and homesign 
communities, respectively), and asking participants to create referring expressions using gesture 
alone, without speech. This silent gesture approach combines experimental control with 
naturalistic validity and yields results that are remarkably consistent across speakers of 
typologically diverse languages (e.g. Futrell et al., 2015; Goldin-Meadow et al., 2008; Hall et al., 
2014; Meir et al., 2017). Converging results from observational fieldwork, computational 
simulation, and controlled experiments would provide strong evidence that communicative 
network structure does in fact influence conventionalization of referring expressions. Given the 
simulation and observational fieldwork results of Richie et al (2014) discussed above, we 
expected participants in richly-connected networks to conventionalize referring expressions 
faster than participants in sparsely-connected networks. Further, based on the simulation results, 
we expected this effect to hold even when controlling for differences between networks in 
number of interactions among network members.	
 
2 Methods	
 
 The Institutional Review Board at the University of Connecticut approved the 
following methods, to which the participants also gave informed consent. 
2.1 Participants.	
 We asked hearing undergraduates who had no experience with sign language to 
engage in a dyadic gestural communication task, in groups of four participants each, called 
“quads”. To complete the task, the four members of each quad needed to complete two sessions, 
typically one week apart. (This time delay was due to the logistical constraints of scheduling 4 
participants and 1-2 experimenters, and does not play a substantive role in the theory.) In order to 
achieve a final dataset of 16 quads (64 individuals), it was necessary to enroll a total of 24 quads 
(96 individuals). Because partial data could not address the research question, it was necessary to 
discard entire quads if the data were incomplete. This occurred due to one or more participants in 
a quad not showing up for or not completing one of the two sessions (n=6 quads), experimenter 
or equipment error (n=1 quad), or having had previous experience with sign language or gesture, 
including having previously participated in similar gesture experiments (n=1 quad). Participants 
received either course credit or $10/session. Initially participants were paid a $5 bonus for 
completing both sessions; this bonus was later removed when it became clear that it was neither 
necessary nor effective.	
2.2 Design & Procedure	
 Each quad was assigned to either a sparsely- or richly-connected condition; each 
participant was also randomly assigned to a position within that network, which we will refer to 
as A, B, C, and D. Dyads then proceeded to interact as shown in Table 1. Participants within a 
dyad took turns producing and comprehending gestured descriptions of 25 real-world objects. 
Speech, writing, mouthing words, and sound effects were prohibited (although participants were 
allowed to silently mouth sound effects like MOO, as this occurs in Nicaraguan homesign, 
Richie et al., 2014). Each participant had a booklet displaying a target image to describe, as well 
as an array of 25 images corresponding to the possible items that their interlocutor might 
describe. The 25 images were the same for both partners, but ordered differently. A low visual 
barrier occluded the participants’ booklets and arrays from their partner’s view.	
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After one participant described an item, the other participant would silently point to one 
of the items in the 5 x 5 array. The experimenter recorded the selected item, and then said “ok” to 
indicate that the next trial could begin (the describer and the comprehender switch roles for a 
new item), regardless of response accuracy.	
 

Round	 Room	1	
(sparse	&	rich)	

Room	2	
(rich	only)	

Network	age,	
sparse	

Network	age,	
rich	

	
1	
	

A-B	 C-D	 0	 0	
A-C	 B-C	 1	 2	

A-D	 B-D	 2	 4	

	
2	

A-B	 C-D	 3	 6	
A-C	 B-C	 4	 8	

A-D	 B-D	 5	 10	
	
3	

A-B	 C-D	 6	 12	
A-C	 B-C	 7	 14	
A-D	 B-D	 8	 16	

	
4	

A-B	 C-D	 9	 18	
A-C	 B-C	 10	 20	
A-D	 B-D	 11	 22	

Table 1	
 
 After a dyad had described all 25 images to each other, they switched partners. The 
first “round” was completed once each participant had communicated with all assigned 
interlocutors. Participants completed rounds 1 and 2 during the first session, and completed 
rounds 3 and 4 approximately one week later, for a total of four interactions with the same 
interlocutors. Note that the interactions involving “A” are identical in both conditions. 
2.3 Materials	
 The stimuli were images of 25 items adapted from Richie and Yang (2013), listed 
in the Appendix. To encourage participants to create expressions that referred to categories (e.g. 
“girl”) rather than specific exemplars (e.g. a particular girl), each item was represented by 3 
exemplars. The original Richie and Yang items were created to be recognizable to Nicaraguan 
participants; we selected a subset of those items that would also be familiar to American college 
students, and supplemented as necessary to ensure that all items had at least one semantically-
similar competitor.	
2.4 Coding.	

 Participants all gave consent to be videorecorded as part of the study. These 
recordings were used for offline coding by the experimenters. For each of the 14,400 gestured 
utterances obtained, an experimenter identified the iconically-expressed conceptual components3 
																																																								
3	 We focus on conceptual components rather than phonological or articulatory components 
largely for ease of analysis. In addition, Morgan (2015), in analysis of Kenyan Sign Language and Al-
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(e.g., MILKING or EARS for ‘cow’) that were produced between trial onset and when the 
interlocutor (correctly or incorrectly) selected an image from the target array. To gauge inter-rater 
reliability, a second experimenter independently coded 25% of these utterances. Cohen’s kappa 
was computed for each combination of item and quad (e.g., the first rich network’s ‘avocado’ 
utterances). Average cohen’s kappa was .59, indicating moderate, bordering on substantial, 
agreement, by Landis and Koch’s (1977) guidelines.	
2.5 Measuring Convergence Across The Network	
 Measuring convergence across time requires us to choose several sets of utterances, 
where each set constitutes a snapshot of the network at a particular point in time. One way we 
could do this is merely considering the utterances from each round. However, this would yield 
only four time points. A more fine-grained approach is to consider sliding windows over 
describer-comprehender pairs. In particular, we consider all windows of three consecutive pairs. 
In the sparse network, this means the first window is AB, AC, AD all from round 1, the second 
window AC and AD from round 1 and AB from round 2, the third window AD from round 1 and 
AB and AC from round 2, and so forth. In the rich network, the first window is analogously all 
the pairs from round 1, the second window the pairs from rows 2 and 3 of round 1 and row 1 of 
round 2, the third window is row 3 of round 1 and rows 1 and 2 of round 2, and so forth. 
Constructing windows this way, we obtain 10 time points over which we can measure 
convergence.	
 To define the amount of (dis)agreement on gestural conventions within each 
community, we first encoded each individual utterance as a set of gestures and converted it to a 
binary vector. Let c, s, t, i, w be particular instances of community (quad), source and target 
(corresponding to describer and comprehender), item, and (sliding-)window (or network age in 
number of completed dyads). Let u(c, s, t, i, w) be an utterance that source s produced to target t 
to refer to item i at window w in community c. Any utterance can be encoded as a binary vector 
(f1, …, fk, …, fN) where N is the number of unique conceptual components (MILKING, DRINK, 
etc.; in this section we refer to these as features for brevity) and fk takes a binary value 0 or 1 
depending on whether the k-th feature (or gesture) is absent or present in the utterance.	
 Let us consider a set of utterances that member s of community c produced to refer 
to item i at time window w, U(c, s, i, w) = {u(c', s', t', i', w') | c=c', s=s', i=i', w=w'}. For every 
set U(c, s, i, w), we define a vector p(c, s, i, w) = (p1, …, pk, …, pN) where pk is the proportion of 
utterances that have feature k. We take the average of p(c, s, i, w) across all members s, p(c, i, w) 
= ∑s p(c, s, i, w) / 4. If pk is 0 or 1, every member of community c completely agrees on whether 
to use feature k or not to refer to item i at round w and hence entropy is 0. The value of 0.5 
suggests the strongest possible disagreement among community members and hence entropy is 
maximal, at 1. Conditional entropy H(Pk | c, i, w) = - pk log(pk) – (1 - pk) log(1 - pk) (we treat 0 
log0 as 0)4 provides a natural way of capturing the amount of uncertainty or disagreement 
regarding the choice of feature k.	
 We assume that random variables Pk’s are independent from each other once 
community, item, and round are chosen. Under this conditional independence assumption, we 
can define the entropy of utterances as follows: H(U | c, i, w) = H(P1, …, Pk, …, PN | c, i, w) = ∑k 
H(Pk | c, i, w).	
																																																								
Sayyid Bedouin Sign Language, concludes that conventionalization on conceptual components precedes 
convergence on articulatory components. As we are experimentally observing the very beginnings of a 
communication system, we find it reasonable to focus on the former stage.	
4	 In this paper, we use base 2 for all logarithmic transformation.	
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 Finally, we define the amount of disagreement (henceforth divergence) of 
community c at window w as the average of H(U | c, i, w) across all items i: D(c, w) = Avgi(H(U 
| c, i, w)). The range of theoretically possible values of D is [0, +∞). In our case, all values of 
D(c, w) were greater than 0.	
 
3 Results	
 
3.1 Accuracy	
 Accuracy was relatively high even at the beginning of the experiment, averaging 
around 80% (chance = 4%), and improved to near ceiling by round 4. There were no differences 
in accuracy as a function of condition, confirming that both sets of participants understood and 
complied with task instructions. Figure 2 shows only accuracy for dyadic interactions that were 
common to both conditions (Table 1, shaded region); accuracy for the interactions unique to the 
Full condition was similarly high.	

Figure 2	
3.2 Conventionalization	
 The visual inspection of data (see thin lines in Figure 3) suggests that the logarithm 
of divergence reduced approximately linearly as a function of SlidingWindow (or simply 
Window). We used brms (Bürkner, 2017), a Bayesian multilevel modeling package, to fit 
log(divergence) to a Bayesian linear mixed-effects model that includes Window and Window-by-
NetworkType interaction as fixed-effects terms as well as by-Quad random intercepts, random 
slopes of Window, and their correlations. We did not include the fixed-effect term of 
NetworkType because log(divergence) is expected to be the same when Window = 0 when the 
members of a community had not interacted with each other yet. The categorical variable 
NetworkType was effect-coded such that the contrasts of the Full and Star network conditions 
were set to 0.5 and -0.5, respectively. Thus, the coefficient of the interaction term Window-by-
NetworkType is interpreted as the difference between the rate of change in the Full networks and 
the rate of change in the Star networks.	
 Table 2 presents the estimates of the coefficients of (Sliding)Window and Window-
by-NetworkType with 95% credible intervals. The coefficient of Window was negative and did 
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not include 0, bWindow = -0.138, 95% CI = [-0.159, -0.117], suggesting that log(divergence) 
reduced as community members participated in more communicative interactions across time. 
More importantly, the slope difference between Full and Sparse networks was negative and did 
not include 0, bWxNT = -0.047, 95% CI = [-0.086, -0.008], suggesting that log(divergence) 
decreased more quickly with Window in the Full networks than in the Star networks. Figure 3 
presents observed divergence values as well as the fitted values with 95% credible intervals on 
the log divergence scale.5 Although we prefer the parameter estimation approach to the Bayesian 
hypothesis testing approach, we report the Bayes factor for those who are interested. We 
calculated the Bayes factor to see whether the reported model (H1) with the interaction term is 
favored over a simpler model (H0: bWxNT = 0) without the interaction term and observed BF10 = 
2.387, suggesting that, under our choice of the prior, there is no strong evidence favoring H1 
over H0, although the direction is as expected6. We briefly note that the frequentist analysis of 
the same data suggests that all the coefficients (including the interaction term) were statistically 
significant; in particular, bAxNT = -0.048, SEWxNT = 0.019, t(14.0) = -2.55, p = .023.7 More detailed 
information including our choice of prior distributions can be found in the Supplementary 
Materials.	
 
Table 2. Summary of the model estimates. 
 Estimate Est.Error 95% CI 
Fixed-effects    
Intercept 2.170	 0.074	 [ 2.022, 2.314]	
Window -0.138	 0.011	 [-0.159, -0.117]	
Window x NetworkType -0.047	 0.020	 [-0.086, -0.008]	
Random-effects    
SD(Intercept) 0.284	 0.063	 [ 0.191, 0.436]	
SD(Window) 0.040	 0.009	 [ 0.026, 0.062]	
Corr(Intercept, Window)	 -0.141	 0.255	 [-0.606, 0.376]	
 

																																																								
5Figure 3 suggests that the divergence of one Quad (S09) in the Star network condition was exceptionally large. 
Because we observed divergence reduction in the quad suggesting the quad followed the experimental instruction 
well, we think the group should not be excluded but be explained by the model. For those who are interested, 
however, we report the result from the analysis after excluding S09 here: bW = -0.137, SEW = 0.011, 95% CI = [-
0.159, -0.114]; bWxNT = -0.046, SEWxNT = 0.023, 95% CI = [-0.0909, -0.0003].	
6Our vague prior for the NetworkType-by-Window interaction effect assigns some probability mass to unlikely large 
values, which are expected when the divergence reduces at the fastest rate in one condition but increases at the 
fastest rate in another condition. We suspect this vague prior penalizes H1 too strongly.	
7The same model was fitted to data, using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015). Following 
Luke (2017), we computed p-values based on the Kenward-Roger approximation of the degrees of freedom 
implemented in the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017).	
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3.2.1 Network Age	
 A byproduct of our manipulation of network structure is that twice as many 
communicative interactions occur per round in the rich condition, relative to the sparse 
condition. We refer to this as “network age”. Therefore, one possibility is that there is no effect 
of network structure beyond that of network age. To evaluate this alternative interpretation, we 
must measure the degree of conventionalization at time points where the two conditions are 
equated for network age. If network age explains the difference between the conditions, there 
should be no difference between the groups after equating for network age; if a difference in the 
same direction persists, it will constitute evidence of an impact of network structure that cannot 
be explained by network age.	
 To control the number of interactions at the community level, we refit the data to 
the same model; the only difference was the replacement of predictor Window with NetworkAge 
(NA).8 Table 3 presents the estimates of the model parameters as well as their credible intervals. 
Interestingly, and contrary to predictions, when the number of interactions within each 
community was controlled, the communities of the Full network type converged on gestural 
conventions more slowly than the communities of the Star network type; bNAxNT = 0.032, SENAxNT = 

																																																								
8	 We note that for two network types, we observed different ranges of values in NetworkAge: 1-10 in 
the Star network type and 2-20 in the Full network type. This is not problematic when we use a linear model as we 
do in the present study, but fitting this dataset to nonlinear models would present certain risks.	

Figure 3. 
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0.015, 95% CI = [0.002, .061].9 The Bayes factor (under our choice of priors) favors a simpler 
model without the interaction, although it is not meaningful: BF10 = 1.134. The frequentist 
analysis suggests that the coefficient of the interaction was statistically significant; bNAxNT = 0.033, 
SEW = 0.014, t(14.1) = 2.3, p = .037. More detailed information is presented in the 
Supplementary Materials.	
 
Table 3. Summary of the model estimates. 
 Estimate Est.Error 95% CI 

Fixed-effects    
Intercept 2.171	 0.074	 [ 2.024, 2.316]	
NetworkAge -0.098	 0.008	 [-0.114, -0.082]	
NetworkAge x NetworkType 0.032	 0.015	 [ 0.002, 0.061]	
Random-effects    
SD(Intercept) 0.284	 0.062	 [ 0.190, 0.431]	
SD(NetworkAge) 0.030	 0.007	 [ 0.020, .047]	
Corr(Intercept, NetworkAge)	 -0.158	 0.256	 [-0.615, 0.365]	
 

																																																								
9	 When the quad (S09) with high divergence was excluded and then the data was fitted to the model, 
we observed a different pattern: bNA = -0.067, 95% CI = [-0.079, -0.056]; bNAxNT = 0.023, 95% CI = [-0.001, 0.046], 
suggesting that the convergence rate (the absolute value of the slope) was not different between two network types. 		
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4 Discussion	
 
 We began by asking how people agree on what to call things. By randomly 
assigning naïve participants to conditions that differed only in communicative network structure, 
we discovered that, per unit time, conventionalization is greater and grows more quickly in the 
rich condition, where all possible pairs communicate with one another and multiple pairs can 
communicate independently and simultaneously, relative to the sparse condition, where all 
communication is channeled through a central hub, limiting the network to one interacting pair at 
a time. However, we found that this condition difference reversed when controlling for rich 
networks’ affordance of parallel interactions, suggesting that, per interaction, the sparse network 
conventionalizes faster. The first finding is consistent with observational fieldwork from a host 
of gestured and signed systems (Richie et al., 2014; Horton, Goldin-Meadow, & Brentari, 2016), 
but the latter finding contradicts predictions made from a previous agent-based model of 
conventionalization (Richie et al., 2014).	
 This difference between the networks that are optimal for rate of 
conventionalization per unit time, and rate of conventionalization per interaction, suggests a 
subtler account of network effects on language emergence than initially supposed (Richie et al., 
2014). That more interactions hastens conventionalization is likely fairly obvious – more 
interactions allow for more influence of communication partners on one another. But what 
accounts for the surprising finding that sparse networks conventionalize faster per interaction 
than rich networks? A few possibilities present themselves. First, perhaps in sparse networks, the 
hub (participant A) can set a standard, and then the rest of the network ‘merely’ needs to 
converge on them. In rich networks, however, members must in some sense negotiate whose 

Figure 4 
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utterances they will converge on, presenting a symmetry-breaking problem of some form. Along 
similar lines, if every participant is trying to remember something about every other participant’s 
preferred utterances, overall memory demands will be higher in the full network, potentially 
leading to degraded memory and convergence on other members’ preferred referring expressions 
as a way of collectively reducing the amount of information that needs to be encoded, stored, and 
retrieved. Ideally, any account of present network structure effects would be implemented and 
tested in an agent-based model. Richie (2017) presents one such newer model of the 
conventionalization process in the present setting, but predictions about network effects have yet 
to be generated from this model, leaving this one avenue for future research. 
 However, caution in overgeneralizing the present results is warranted. First, 
comprehenders received no feedback on whether they chose (in)correctly. High communication 
accuracy and conventionalization were nevertheless possible because the target items afforded 
highly iconic and unambiguous utterances. In more naturalistic settings, of course, interlocutors 
often have the opportunity to detect and rectify misunderstandings. It is unclear how this 
difference might affect the present results and conclusions, although one possibility is that 
allowing feedback would merely hasten conventionalization and improvement in communication 
and not otherwise influence network effects. Second, the present networks are simplifications 
relative to real world linguistic communities. For example, real Nicaraguan home sign networks 
are larger than 4 individuals, and in the real Nicaraguan Sign Language community, it is almost 
certainly not the case that every member interacts with every other member with equal 
frequency. The NSL community may well be characterized more accurately by something like a 
small-world network (Watts and Strogatz, 1998), a network with mostly local connections and a 
few random long-range connections. An experimental study of conventionalization would of 
course have more ecological validity if the experimental networks more closely matched those of 
the analogous communities in the real world, but running an experiment in the gestural modality 
at greater scale and complexity comes with significant practical challenges. It thus may be more 
feasible to run web-based experiments in a nongestural modality but with more realistic network 
structures (e.g., Centola & Baronchelli, 2015)10. Of course, this would entail sacrificing the 
affordances of the human body, physical environment, and knowledge about the affordances of 
the referents that silent gesture studies offer. Ideally, combining studies using naturalistic 
communication media like the present and results from studies using more realistic network 
structures will provide convergent results.	
 Experimentally testing and simulating conventionalization in more complex 
settings is also warranted as the relationship between increased connectedness – and 
consequently opportunity for parallel interaction – and increased conventionalization may not be 
monotonic. For example, factors that increase conventionalization within a specific network 
could subsequently impede conventionalization if and when members of different networks 
attempt to communicate with one another. People from richly-connected networks may have 
overlearned the referring expressions internal to their own network, such that they may not 
conventionalize with new interlocutors as well as people from more sparsely-connected networks 
might.	

																																																								
10	 Besides experimentally testing networks motivated by particular naturally occurring 
languages and communication systems, larger web-based experiments can also manipulate particular 
network structural properties, like node degree, clustering, average path length, modularity, etc 
(Baronchelli et al., 2013).	
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 Observational data from Al-Sayyid Bedouin Sign Language (ABSL; Sandler et al., 
2011) and Kenyan Sign Language (Morgan, 2015) are consistent with this possibility. As 
described by Sandler et al. (2011), ABSL is a full human language that lacks a system of 
phonological contrasts. More precisely, linguists studying ABSL have thus far not been able to 
identify minimal pairs: lexical items whose forms differ from one another only with respect to 
meaningless formational elements (e.g. handshape, movement, location). In addition, they find 
that the phonological form of many common referring expressions differs slightly from family to 
family. They propose that patterns of social interaction partially explain this pattern: family 
members likely interact more with one another than with other users of ABSL, and 
conventionalization at this relatively local level may impede conventionalization across the 
entire community, and/or may function as a sociolinguistic identity marker. Kenyan Sign 
Language, on the other hand, despite being about 20 years younger than ABSL, provides clear 
and compelling evidence for a system of phonological contrasts (Morgan, 2015)11. Might 
differences in the social structure of these communities account for these differences in lexical 
conventionalization? KSL has a much larger group of signers, and is a classic example of a 
“Deaf community sign language” whereas ABSL is a classic example of a “village sign 
language”, as per Meir et al. (2010). Unfortunately, too many uncontrolled factors differ between 
ABSL and KSL to offer a definitive answer to this question. However, other research on 
emerging sign languages affords even more promising answers.	
 Horton, Goldin-Meadow, and Brentari. (2016) have begun to document the process 
of lexical conventionalization among deaf homesigners living in Guatemala. Whereas most 
research on homesigners focuses on those who are the only deaf member of their family, 
Horton’s work is remarkable for its inclusion of homesigners who have other deaf homesigners 
as interlocutors: whether siblings, extended family members, or even parents (see also Haviland, 
2013, 2015). Because these individuals are embedded within relatively similar cultures (e.g. they 
all live near Nebaj, Guatemala, cf. Nicaraguan homesigners), differences in conventionalization 
among these individuals are more likely to reflect the impact of the different communicative 
network structures. She finds that when there are multiple homesigners in a family, 
conventionalization within that family is intermediate between what is observed in the families 
of individual homesigners and in sign language communities.	
 In each of these naturally-emerging languages, conventionalization for referring 
expressions is greater in richly-connected networks than sparsely-connected networks. Although 
we could not infer causality on the basis of these observational data alone, the present study 
obtained an analogous pattern via random assignment in an experimental context. Again, our 
results suggest this rich network advantage arises not because rich networks provide greater 
conventionalization per interaction (in fact, quite the opposite holds), but because more richly-
connected networks afford more communicative interactions per unit time (as multiple 
conversations can happen at once), which is virtually certain to be the case in real-world rich 

																																																								
11	  Morgan (2015) further observes that conventionalization seems to proceed in at least two 
stages. Whereas the examples described from ABSL mostly fall within what Sandler et al. (2011) identify 
as an “iconic prototype”, Morgan (2015) points out that there is likely to have been a separate, earlier 
phase during which signers first converge on a “conceptual target”. She finds that conventionalization 
toward an “articulatory target” tends to follow at a slight lag, suggesting that conventionalization begins 
at a semantic level before continuing at a phonological level. Conventionalization at this semantic level is 
therefore the primary focus of the present study.	
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networks (e.g., networks with multiple Deaf individuals carrying on multiple independent signed 
conversations).	
 Here, we have restricted ourselves to referring expressions, which we take to be an 
elemental ingredient of any emerging language, including homesign. Even under a generative 
view, structure at this level is expected to depend on external input; therefore, the present 
findings do not pose any particular challenges to theories of linguistic structure as conceived 
under the minimalist program (Chomsky 1995). Still, they do highlight the potential for 
functional or usage-based influences on the lexicon (Piantadosi, Tily, and Gibson, 2011; Richie, 
2016), as well as lead to consideration of the potential roles that the lexicon may or may not play 
in the emergence of other aspects of linguistic structure. For example, the emergence of structure 
at discourse and perhaps even syntactic levels seems to not require a conventionalized lexicon 
(e.g., Coppola & Newport 2005); indeed, even hearing non-signers are highly consistent in their 
use of constituent order when describing various types of events (Christensen et al., 2016; Futrell 
et al., 2015; Gibson et al., 2013; Goldin-Meadow et al., 2008; Hall et al., 2013, 2014, 2015; Meir 
et al., 2017; Schouwstra & de Swart, 2014). Interestingly, hearing non-signers show much less 
systematicity at morphophonological levels (Brentari et al., 2012, 2015, 2016; Horton et al., 
2015).	
 Finally, we acknowledge that those who favor hypothesis testing with Bayes factors 
over parameter estimation with credible intervals – which we favor and interpret here – may 
reach different conclusions from our data. Specifically, Bayes factors suggested there is no strong 
evidence for Network-Type by Window or Network-Type by Network-Age interactions. We are 
hesitant to make a conclusion based on these Bayes factors because, for one, the null model 
instantiates an interaction effect of precisely 0, which is highly unlikely for almost any effect 
(Gelman, 2011) and especially in our case where participants in different Network Type 
conditions were exposed to different communication environments. We also note that our priors 
were vague, assigning a significant proportion of probability mass to unlikely large interaction 
effects, due to lack of similar previous work; as well known, the Bayes factor can be highly 
sensitive to the choice of priors. Regardless of one’s preferred interpretation of the present 
findings, the data reported here can better inform the priors for future work.	
 
5 Conclusions	
 
 The study of homesign and emerging sign languages sheds new light on the earliest 
stages of semiotic organization in human languages. Compared to previous results from 
observational fieldwork and computational simulation, our experimental data suggest a more 
subtle story concerning the role of network structure in language emergence. We have 
demonstrated that people in more richly-connected networks tend to converge on referring 
expressions more quickly and more completely than those in sparsely-connected networks, 
although, contrary to previous computational modeling, this difference reverses when controlling 
for the greater numbers of interactions afforded by rich networks. This latter result points to the 
importance of testing computational models of language emergence against empirical data. 
Besides using present posteriors to justify informative new priors in replicating the present work 
in a Bayesian data analysis framework, future experimental and modeling work, inspired by 
observational fieldwork, could investigate effects of pseudo-lexical conventionalization on 
emergence of other linguistic structures, and conventionalization (and its consequences) in 
richer, more realistic networks.	
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Appendix	
Stimulus Items 
avocado 
baseball cap 
beans 
boy 
cabbage 
cloud 
cow 
cowboy hat 
dog 
girl 
goat 
horse 
lake 
lime 
man 
mountain 
old woman 
orange 
pig 
policeman 
rice 
sheep 
soldier 
truck 
woman



	

	

Tables	
Table 1. Schedule of interactions. The sequence of dyadic interactions is given below. Note that 
in the Rich condition, dyads in Room 2 were tested at the same time as dyads in Room 1; 
therefore, the Rich network “ages” twice as quickly as the Sparse network.	
Table 2. Summary of the mixed-effects regression model. logDivergence ~ 1 + NetworkType + 
NetworkType:Window + (1 + Window | Quad)	
Table 3. Summary of the mixed-effects regression model. logDivergence ~ 1 + NetworkType + 
NetworkType:NetworkAge + (1 + NetworkAge | Quad)



	

	

Figures 
Figure 1. Two networks of four individuals each, differing only in connectivity. 
Figure 2. Average accuracy across dyads by round, for interactions common to both Rich and 
Sparse networks. 
Figure 3. Plot of log divergence against sliding window. Thin lines represent observed log 
divergence change. The ribbons present the 95% credible intervals of the conditional means 
estimated from the model. 
Figure 4. Plot of log divergence against network age. Thin lines represent observed log 
divergence change. The ribbons present the 95% credible intervals of the conditional means 
estimated from the model.	


